Revision as of 02:59, 22 May 2017 by Congs (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

2016 AC-2 P1. (a) $ X=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=\begin{bmatrix} y \\ \dot{y} \end{bmatrix} $

$ \begin{cases} \dot{x}=\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix}=\begin{bmatrix} x_2 \\ -2x_1 x_2-u x_1+2u \end{bmatrix}\\ y=x_1 \end{cases} $

(b) $ u \equiv 2 $

$ \dot{x} =\begin{bmatrix} x_2 \\ -2x_1 x_2-2x_1+4 \end{bmatrix}=\begin{bmatrix} x_2 \\ -2x_1 (x_2+1)+4 \end{bmatrix} $

let $ \begin{cases} -2x_1 (x_2+1)+4=0 \\ x_2=0 \end{cases} \Rightarrow \begin{cases} -2x_1 +4=0 \\ x_2=0 \end{cases} \Rightarrow \begin{cases} x_1=2 \\ x_2=0 \end{cases} $

$ \therefore The \; equilibrum\; point\; is \;x_e=\begin{bmatrix} 2 \\ 0 \end{bmatrix} $

(c) $ u \equiv 2 \quad x_e=\begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad let \;x=f(x) $

The Jacobin of $ \dot{x} $ is: $ \begin{align} Df(x)= \begin{bmatrix} 0 & 1 \\ -2x_1-2 & -2x_1 \end{bmatrix} \end{align} $

The linear dynamics around $ x_e $ is $ \frac{d}{dt}f(x)=\begin{bmatrix} 0 & 1 \\ -2 & -4 \end{bmatrix} f(x) $

which is stable, locally stable at $ x_e $.

P2. i) $ x[k+1]=A x[k] $

$ y[k]=\begin{bmatrix} -1 & 1 \end{bmatrix}x[1]=\begin{bmatrix} -1 & 1 \end{bmatrix}\begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix}x[0]=0 $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn