Inverse Z Transform *under construction*
Overview
- The purpose of this page is to...
- I. Define the Z Transform and Inverse Z Transform
- II. Provide Example Problems of the Inverse Z Transform
I. Definitions
- Z Transform
$ X(z)=\mathcal{L}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n} $
- Inverse Z Transform
$ x[n]=\mathcal{L}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz $
II. Example Problems of the Inverse Z Transform
- We will find the Inverse Z transform of various signals by manipulation and then using direct Inversion.
- On the first example we will go slowly over each step.
Ex. 1 Find the Inverse Z transform of the following signal
$ X(z)=\frac{1}{1-z}, \text{ ROC } |z|<1 $
- note: It is important to realize that we are not going to try to use the direct formula for an inverse Z transform, Instead our approach will be to manipulate the signal so that we can directly compare it with the Z transform equation and by inspection obtain the Inverse Z transform.
- First we need to manipulate the given ROC inequality to be in the following form, with 'A' being some expression that contains z
- In this case this is already satisfied with
- Then we need to manipulate the given signal to be in the following form, B is just some expression that is the result of adjusting the equation (in this case B = 1)
- Using a infinite Geometric sum we can obtain following...
- By comparison with the Z Transform definition, we can determine $ x[n] $
Ex. 2 Find the Inverse Z transform of the following signal
$ X(z)=\frac{1}{1-z}, \text{ ROC } |z|>1 $
- First we need to manipulate the given ROC inequality to be in the following form, with 'A' being some expression that contains z
- In this case
- Manipulate the given signal
- Using a infinite Geometric sum we can obtain
- By comparison with the Z Transform definition, we can determine $ x[n] $
Ex. 4 Find the Inverse Z transform of the following signal
$ X(z)=\frac{1}{1-2z}, \text{ ROC } |2z|>1 $
- Manipulate the given signal
- Using a infinite Geometric sum we can obtain
- By comparison with the Z Transform definition, we can determine $ x[n] $