Revision as of 18:42, 9 September 2008 by Longja (Talk)

Phasors

$ x(t)=Ae^{j\theta+\phi} $

Where A is the radius of the phasor and $ \phi $ if the offset.

Useful Phasors Facts

$ e^{j\theta} = \cos{\theta}+j\sin{\theta} $

$ Ae^{j[\theta+\phi]}=Ae^{j\theta}e^{j\phi} $

$ \cos{\theta}=\frac{e^{j\theta}+e^{-j\theta}}{2} $

$ \sin{\theta}=\frac{e^{j\theta}-e^{-j\theta}}{2j} $

$ |e^{j\theta}|=1 $


Energy

Discrete

$ Insert formula here $


Continuous

Power

Discrete

Continuous

Geometric Series

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett