Let define a n-by-n matrix A and a non-zero vector $ \vec{x}\in\mathbb{R}^{n} $. If there exists a scalar value $ \lambda $ which satisfies the vector equation $ A\vec{x}=\lambda\vec{x} $, we define $ \lambda $
as an eigenvalue of the matrix A, and the corresponding non-zero vector $ \vec{x} $ is called an eigenvector of the matrix A. To determine eigenvalues and eigenvectors a characteristic equation $ D(\lambda)=det\left(A-\lambda I\right) $ is used. Here is an example of determining eigenvectors and eigenvalues where the matrix A is given by
Then the characteristic equation D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0. By solving the quadratic equation for \lambda , we will have two eigenvalues \lambda_{1}=-1 and \lambda_{2}=-6 . By substituting \lambda's into Eq [eq:1]