Revision as of 07:34, 30 September 2013 by Apanneer (Talk | contribs)


Practice Question, ECE438 Fall 2013, Prof. Boutin

On computing the inverse z-transform of a discrete-time signal.


Compute the inverse z-transform of

$ X(z) =\frac{1}{3-z}, \quad \text{ROC} \quad |z|>3 $.

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ X(z) =\frac{1}{\frac{3z}{z} - z} = \frac{-1}{z} \frac{1}{1-\frac{3}{z}} $

$       =\frac{-1}{z} \sum_{n=0}^{+\infty} (\frac{3}{z})^n = \sum_{n=0}^{+\infty} (-z^{-1}) (3z^{-1})^n  $
NOTE: $  (3z^{-1})^n = (3^n) (z^{-n})  $ 
$  = \sum_{n=0}^{+\infty} -3^n z^{-n-1} = \sum_{n=-\infty}^{+\infty} -3^n u[n] z^{-n-1}  $
NOTE: Let k=n+1
$  = \sum_{n=-\infty}^{+\infty} -3^{k-1} u[k-1] z^{-k} $ (compare with $ \sum_{n=-\infty}^{+\infty} x[n] z^{-k} $) 
Therefore, $  x[n]= -3^{n-1} u[n-1]  $
Grader's comment: Correct Answer

Answer 2

$ X(z) = \frac{1}{3-z} = -\frac{1}{z} \frac{1}{1-\frac{3}{z}} $

$ X(z) = \frac{1}{z} \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \sum_{n=-\infty}^{+\infty} -u[n]3^{n}z^{-n-1} $

Let k = n+1, so n = k-1

$ X(z) = \sum_{n=-\infty}^{+\infty} -u[k-1]3^{k-1}z^{-k} $

By comparison with the z-transform equation

$ x[n] = -u[n-1] 3^{n-1} $

Grader's comment: Correct Answer

Answer 3

$ X(z) = \frac{1}{3-z} = -\frac{1}{z} \frac{1}{1-\frac{3}{z}} $

$ X(z) = \frac{1}{z} \sum_{n=0}^{+\infty} (\frac{3}{z})^{n} = \sum_{n=0}^{+\infty} (-3)^{n}({z})^{-n-1} = \sum_{n=-\infty}^{+\infty} -u[n]3^{n}z^{-(n+1)} $

Let k = n+1 then n = k-1

$ X(z) = \sum_{n=-\infty}^{+\infty} -u[k-1]3^{k-1}z^{-k} $

By comparison,

$ x[n] = -u[n-1] 3^{n-1} $

Grader's comment: Correct Answer

Answer 4

$ X(Z) = \frac{1}{3-Z} $

$ X(Z) = \frac{-1}{Z} \frac{1}{1-\frac{3}{Z}} $

Since,$ |3|<Z $

$ \frac{1}{1-\frac{3}{Z}} = \sum_{n=0}^{+\infty} (\frac{3}{Z})^{n} $

Thus,

$ X(Z) = \frac{-1}{Z} \sum_{n=0}^{+\infty} (\frac{3}{Z})^{n} $

$ X(Z) = -Z^{-1} \sum_{n=0}^{+\infty} (\frac{3}{Z})^{n} $

$ X(Z) = -\sum_{n=-\infty}^{+\infty} u[n] 3^{n}Z^{-n-1} $

Let k=n+1, then -k=-n-1,n=k-1

$ X(Z) = -\sum_{n=-\infty}^{+\infty} u[k-1] 3^{k-1}Z^{-k} $

Therefore, $ x(n) = -u[n-1] 3^{n-1} $

Grader's comment: Correct Answer

Answer 5

By Yixiang Liu

$ X(z) = \frac{1}{3-Z} $


$ X(z) = \frac{1}{-z}* \frac{1} {\frac{3}{-Z}+1} $  : Grader's comment: Use x instead of convolution symbol

$ X(z) = \frac{1}{-z}* \frac{1} {1-\frac{3}{Z}} $

$ X(z) = \frac{1}{-Z} \sum_{n=0}^{+\infty} (\frac{3}{3})^n $

$ X(z) = \sum_{n=0}^{+\infty} 3^{n} Z^{-n-1} $

$ X(z) = \sum_{-\infty}^{+\infty} u[n] 3^{n} Z^{-n-1} $

Let -k = -n-1, so n = k-1

$ X(z) = \sum_{-\infty}^{+\infty} u[k-1] 3^{k-1} Z^{-k} $

By comparison with the x-transform formula

$ x[n] = 3^{n-1} u[n-1] $

Grader's comment: Forgot the negative sign

Answer 6

$ X(z) = \frac{1}{3-z} $

we have |z| > 3,

$ X(z) = \frac{1}{3} \frac{1}{1-\frac{z}{3}} $


$ x[n] = (\frac{1}{3})^{-n+1} u[-n] $

Grader's comment: Wrong approach



Answer 7


$ X(z) = \frac{1}{3-z} $

$ X(z) = \frac{1}{\frac{3}{z} z -z} $

$ X(z) = \frac{1}{z} \frac{1}{\frac{3}{z} - 1} $

$ X(z) = \frac{-1}{z} \frac{1}{1-\frac{3}{z}} $

$ X(z) = \frac{-1}{z} \frac{1-\left( \frac{3}{z} \right) ^{n}}{1-\frac{3}{z}}, \quad \text{As n goes to} \quad \infty \text{ since ROC} \quad |z|>3 $

$ X(z) = \frac{-1}{z} \sum_{n=0}^{\infty} \left( \frac{3}{z} \right)^{n} $

$ X(z) = \frac{-1}{z} \sum_{n=0}^{\infty} 3^n z^{-n} $

$ X(z) = -\sum_{n=0}^{\infty} 3^n z^{-\left(n+1 \right)}, \quad \text{Replace n+1 with k} $

$ X(z) = -\sum_{k=1}^{\infty} 3^{k-1} z^{-k} $

$ X(z) = -\sum_{-\infty}^{\infty} 3^{k-1} u[k-1] z^{-k}, \quad \text{By comparing with DTFT equation we get} $

$ x[n] = -3^{\left( n-1 \right) } u[n-1] $

Grader's comment: Correct Answer

Answer 5

$ X(z) = \frac{1}{\frac{3z}{z}-z} $

$ = -(\frac{1}{z})(\frac{1}{1-\frac{3}{z}}) $

Using the geometric series formula,

$ = -(\frac{1}{z})\sum_{n=0}^{\infty}(\frac{3}{z})^n $

$ = -(\frac{1}{z})\sum_{n=0}^{\infty}3^nz^{-n} $

$ = \sum_{n=-\infty}^{\infty}-u[n]3^nz^{-n-1} $

Let k = n+1,

$ = \sum_{k=-\infty}^{\infty}-u[k-1]3^{k-1}z^{-k} $

By comparison with the Z-transform formula,

x[n] = -u[n-1]3n-1

Grader's comment: Correct Answer


Answer 9

$ X(z)=\frac{1}{3-Z} $

$ = \frac{-1}{z}*\frac{1}{1-\frac{3}{z}} $

$ = \frac{-1}{z}\sum_{n=0}^{\infty}(\frac{3}{z})^n $

$ = \sum_{n=0}^{\infty}(-z^{-1})(3z^{-1})^n $

$ = \sum_{n=0}^{\infty}-3^n z^{-n-1} $

$ = \sum_{n=-\infty}^{\infty}-3^n u[n] z^{-n-1} $

substituting n+1 with k:

$ = \sum_{n=-\infty}^{\infty}-u[k-1]3^{k-1}z^{-k} $

Comparing to common Z-transform tables:

x[n] = (−3^(n−1))u[n−1]

Grader's comment: Correct Answer


Back to ECE438 Fall 2013 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn