Revision as of 08:10, 29 September 2013 by Mhossain (Talk | contribs)


Theorem

Union is commutative
$ A\cup B = B\cup A $
where $ A $ and $ B $ are events in a probability space.



Proof

$ \begin{align} A\cup B &\triangleq \{x\in\mathcal S:\;x\in A\;\mbox{or}\; x\in B\}\\ &= \{x\in\mathcal S:\;x\in B\;\mbox{or}\; x\in A\}\\ &= B\cup A\\ \blacksquare \end{align} $


Back to list of all proofs

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang