Revision as of 04:49, 16 September 2013 by Mboutin (Talk | contribs)


Practice Problem on Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= \sin \left( \frac{2 \pi }{100} n \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n]=\sin \left( \frac{2 \pi}{100} \right) $


$ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $

$ X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} $

$ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $


$ X_(\omega) = \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right) by DTFT table $

Instructor's comment: You need to learn to find the answer without using a table. Now, I am not sure which table you used, but it must be wrong, since the anwer you obtained is not periodic with period $ 2\pi $.

Answer 2

First, write the original function as: $ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $


Then, for w = [-pi, pi] ( Instructor's comment: You need more justification here.)

$ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $

$ X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $

which is really is:

$ X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $

( Instructor's comment: You should make it clear which expressions are valid for all values of $ \omega $, and which expressions are only valid for $ \omega \in [-\pi, \pi ] $.

Answer 3

We can separate (Instructor's comment: separate? Do you mean "write"?)the equation ( Instructor's comment: it's not an equation: it's a signal, or a function.) to the following function

$ x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100} - e^\frac{- j 2 \pi n}{100} \right) $

Because based on Fourier transform equation,

$ X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n} $

Substitute in x[n]

$ X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right) $

(Instructor's comment: Why write the equation above if you are going to use a FT pair from a table?)

From Discrete Fourier Transform pair,

$ x[n] = e^{-j\omega_0 n} $ DTFT to $ X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) $

(Instructor's comment: Careful above! The original signal was called x[n]; you can't reuse x[n] for a different signal.)

Hence, the function (Instructor's comment: Function? You mean "DTFT"?.) will be

$ X_(\omega) = \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right) $

(Instructor's comment: What is $ \omega_0 $?)

$ x[n]=\sin \left( \frac{2\pi}{100} n \right) $

(Instructor's comment: You don't need to re-write the signal.)


Back to ECE438 Fall 2013

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang