Revision as of 13:37, 8 October 2008 by Thouliha (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Compute the Inverse Fourier transform of:

$ \mathcal{X}(\omega)=3\pi \delta (\omega-\pi) $

Using the Formula for Inverse Fourier Transforms:

$ \mathcal{F}^{-1}(\mathcal{X}(\omega))= x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t} \,d\omega $

So:

$ x(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty}3\pi \delta (\omega-\pi)e^{j\omega t} \,d\omega $ Using sifting property:

$ =\frac{3\pi}{2\pi}e^{j\pi t}=1.5e^{j\pi t} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood