Revision as of 14:12, 26 September 2008 by Shamilto (Talk)

Define a Periodic CT Signal and Compute its Fourier Series Coefficients

Let's start this process by defining our signal. For simplicities sake lets use the the signal

$ x(t) = 4sin(3t) + 8cos(7t) $

The Fourier Series can be easily found by treating

$ Asin(\omega_0t) = \frac{A*(e^{j\omega_0t} - e^{-j\omega_0t})}{2j} $

and

$ Acos(\omega_0t) = \frac{A*(e^{j\omega_0t} + e^{-j\omega_0t})}{2} $

This alows us to to put x(t) in the form of

$ x(t) = \sum_{k=- \infty }^ \infty a_ke^{jk\omega_0t} $

which gives us

$ x(t) = \frac{4*(e^{j3t} - e^{-j3t})}{2j} + \frac{8*(e^{j7t} + e^{-j7t})}{2} $

Simplifying and distributing

$ x(t) = \frac{2*e^{j3t} }{j}- \frac{2*e^{j3t} }{j} + 4e^{j7t} + 4e^{-j7t} $

$ \ a_{-3} = \frac{2}{j} $

$ \ a_{3}= \frac{-2}{j} $

$ \ a_{-7} = 4 $

$ \ a{_7} = 4 $

all other $ \ a_k = 0 $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett