Revision as of 15:49, 12 September 2013 by Liu582 (Talk | contribs)

Practice Problem on Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n^2 \left( u[n+3]- u[n-1] \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!

No need to write your name: we can find out who wrote what by checking the history of the page.


Answer 1

x[n] = n2(u[n + 2] − u[n − 1]).

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ = \sum_{n=-3}^{0} n^2 z^{-n} $

= 9z3 + 4z2 + z

= z3(9 + 4z − 1 + z − 2)

= X(z) = (9 + 4z − 1 + z − 2) / (z − 3), for all z in complex plane.

Answer 2

Muhammad Syafeeq Safaruddin

x[n] = n2(u[n + 3] − u[n − 1])

x[n] = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n))

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) z^{-n} $

X(z) = 9z3 + 4z2 + z + 1 for all z in complex plane


Answer 3

Write it here.

Answer 4

Write it here.

Answer 5

Tony Mlinarich

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = n^2(\delta (n+3)+\delta (n+2)+\delta (n+1)+\delta (n)+\delta (n-1)) z^{-n} $

X(z) = 9z3 + 4z2 + z + 1/z<\span>


Back to ECE438 Fall 2013 Prof. Boutin

Answer 7

Yixiang Liu

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

          =  \sum_{n=-\infty}^{+\infty} </math> n^2 (u[n+3] - u[n-1])z^{-n}

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang