Revision as of 15:27, 12 September 2013 by Amlinari (Talk | contribs)

Practice Problem on Z-transform computation

Compute the compute the z-transform (including the ROC) of the following DT signal:

$ x[n]= n^2 \left( u[n+3]- u[n-1] \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Andrei Henrique Patriota Campos

x[n] = n2(u[n + 2] − u[n − 1]).

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ = \sum_{n=-3}^{0} n^2 z^{-n} $

= 9z3 + 4z2 + z

= z3(9 + 4z − 1 + z − 2)

= X(z) = (9 + 4z − 1 + z − 2) / (z − 3), for all z in complex plane.

Answer 3

Muhammad Syafeeq Safaruddin

x[n] = n2(u[n + 3] − u[n − 1])

x[n] = n2(δ(n + 3) + δ(n + 2) + δ(n + 1) + δ(n))

$ X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} $

$ X(z) = \sum_{n=-\infty}^{+\infty} n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)) z^{-n} $

X(z) = 9z3 + 4z2 + z + 1 for all z in complex plane


Answer 3

Write it here.

Answer 4

Write it here.

Answer 5

Tony Mlinarich

$ X(z) = \sum_{n=\-infty}^{+\infty} x[n] z^{-n} $

$ X(z) = n^2(\delta(n+3)+\delta(n+2)+\delta(n+1)+\delta(n)+\delta(n-1)) z^{-n}<\math> <span class="texhtml">''X''(''z'') = 9''z''<sup>3</sup> + 4''z''<sup>2</sup> + ''z'' + ''1/z''<\span> [[2013 Fall ECE 438 Boutin|Back to ECE438 Fall 2013 Prof. Boutin]] [[Category:ECE301]] [[Category:ECE438]] [[Category:ECE438Fall2013Boutin]] [[Category:Problem_solving]] [[Category:Z-transform]] $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett