Equivalences of Well-ordered Relation
Definitions
$ \langle A, R \rangle $ is an totally ordered class iff
- $ R\subseteq A\times A $
- (irreflexivity) $ \forall x \in A \langle x,x \rangle \notin R $
- (transitivity) $ \forall x,y,z \in A \langle x,y \rangle \in R \wedge \langle y,z \rangle \in R \rightarrow \langle x,z \rangle \in R $
- (trichotomy) $ \forall x,y \in A \langle x,y \rangle \in R \vee \langle y,x \rangle \in R \vee x=y $