Revision as of 09:17, 8 May 2013 by Ruanj (Talk | contribs)


Jacobians and their applications

by Joseph Ruan


Basic Definition

The Jacobian Matrix is just a matrix that takes the partial derivatives of each element of a transformation (which is in the form of a vector. Let T be a transformation such that


$ T(u,v)=<x,y> $


then the Jacobian matrix of this function would look like this:

$ J(u,v)=\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} $

In general, the Jacobian Matrix of a Transformation F, looks like this:

JacobianGen.png

To help illustrate this, let's do an example:

Example #1:

Let's take the Transformation: $ T(u,v) = <u * \cos v,r * \sin v> $ . What would be the Jacobian Matrix of this Transformation?

Solution:

$ x=u*\cos v \longrightarrow \frac{\partial x}{\partial u}= \cos v , \; \frac{\partial x}{\partial v} = -u*\sin v $

$ y=u*\sin v \longrightarrow \frac{\partial y}{\partial u}= \sin v , \; \frac{\partial y}{\partial v} = u*\cos v $

Therefore the Jacobian matrix is

$ \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}= \begin{bmatrix} \cos v & -u*\sin v \\ \sin v & u*\cos v \end{bmatrix} $

This example actually showcased the transformation "T" as the change from polar coordinates into Cartesian coordinates.

Let's do another example.

===Example #2:=== Let


Application: Jacaobian Determinants

The determinant of Example #1 gives:

$ \left|\begin{matrix} \cos v & -u * \sin v \\ \sin v & u * \cos v \end{matrix}\right|=~~ u \cos^2 v + u \sin^2 v =~~ u $

Notice that, in an integral when changing from cartesian coordinates (dxdy) to polar coordinates $ (drd\theta) $, the equation is as such:

$ dxdy=r*drd\theta $

in this case, since $ u =r $ and $ v = \theta $, then

$ dxdy=u*dudv $

It is easy to extrapolate, then, that the transformation from one set of coordinates to another set is merely

$ dC1=det(J(T))dC2 $

where C1 is the first set of coordinates, det(J(C1)) is the determinant of the Jacobian matrix made from the Transformation T, T is the Transformation from C1 to C2 and C2 is the second set of coordinates.

It is important to notice several aspects: first, the determinant is assumed to exist and be non-zero, and therefore the Jacobian matrix must be square and invertible.

For integrals, changing variables is quite useful. The most obvious case is that of u-substitution. However, for larger dimensions, this gets slightly trickier. Suppose we wanted to change



Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva