Revision as of 05:55, 24 April 2012 by Lrprice (Talk | contribs)

This Collective table of formulas is proudly sponsored
by the Nice Guys of Eta Kappa Nu.

Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!

                                         HKNlogo.jpg
Trigonometric Identities
Basic Definitions
Definition of tangent $ \tan \theta = \frac{\sin \theta}{\cos\theta} $
Definition of cotangent $ \cot \theta = \frac{\cos \theta}{\sin\theta} \ $ credit
Definition of secant $ \sec \theta = \frac{1}{\cos \theta} \ $
Definition of cosecant $ \csc \theta = \frac{1}{\sin \theta} \ $
Definition of versed sine (versine) $ \text{versin } \theta = 1- \cos \theta \ $
Definition of versed cosine (versine) $ \text{vercosin } \theta = 1+ \cos \theta \ $
Definition of coversed sine (coversine) $ \text{coversin } \theta = \text{cvs } \theta = 1- \sin \theta \ $
Definition of coversed cosine (covercosine) $ \text{covercosin } \theta = 1+ \sin \theta \ $
Definition of haversed sine (haversine) $ \text{haversin } \theta = \frac{1- \cos \theta}{2} $
Definition of haversed cosine (havercosine) $ \text{havercosin } \theta = \frac{1+ \cos \theta}{2} $
Definition of hacoversed sine (hacoversin) $ \text{hacoversin } \theta = \frac{1 - \sin \theta}{2} $
Definition of hacoversed cosine (hacovercosin) $ \text{hacovercosin } \theta = \frac{1 + \sin \theta}{2} $
Definition of exterior secant (exsec) $ \text{exsec } \theta = \sec \theta - 1 \ $
Definition of exterior cosecant (excosec) $ \text{excosec } \theta = \csc \theta - 1 \ $
Definition of chord (crd) $ \text{crd } \theta = 2 \sin(\frac{\theta}{2}) $
Pythagorean identity and other related identities
Pythagorean identity $ \cos^2 \theta+\sin^2 \theta =1 \ $
$ \sin^2 \theta = 1-\cos^2 \theta \ $
$ \cos^2 \theta = 1-\sin^2 \theta \ $
$ \sec^2 \theta = 1+\tan^2 \theta \ $
$ \csc^2 \theta = 1+\cot^2 \theta \ $
please continue place formula here
Half-Angle Formulas
Half-angle for sine $ \sin \frac{\theta}{2} = \pm \sqrt{ \frac{1-\cos \theta}{2} } \ $
Half-angle for cosine $ \cos \frac{\theta}{2} = \pm \sqrt{ \frac{1+\cos \theta}{2} } \ $
Half-angle for tangent $ \tan \frac{\theta}{2} = \csc \theta - \cot \theta \ $
Half-angle for tangent $ \tan \frac{\theta}{2} =\pm\sqrt{\frac{1-\cos \theta}{ 1+\cos \theta }} \ $
Half-angle for tangent $ \tan \frac{\theta}{2} =\frac{\sin \theta}{ 1+\cos \theta } \ $
Half-angle for tangent $ \tan \frac{\theta}{2} =\frac{1-\cos \theta}{ \sin \theta } \ $
Half-angle for cotangent $ \cot \frac{\theta}{2} = \csc \theta + \cot \theta $
Half-angle for cotangent $ \cot \frac{\theta}{2} = \frac{1 + \cos \theta}{\sin \theta} $
Half-angle for cotangent $ \cot \frac{\theta}{2} = \pm \sqrt{1 + \cos \theta \over 1 - \cos \theta} $
Half-angle for cotangent $ \cot \frac{\theta}{2} = \frac{\sin \theta}{1 - \cos \theta} $
Double-Angle Formulas
double-angle for sine $ \sin 2 \theta = 2 \sin \theta \cos \theta \ $ credit
double-angle for sine $ \sin 2 \theta = \frac{ 2 \tan \theta}{1+ \tan^2 \theta } \ $
double-angle for cosine $ \cos 2 \theta =\cos^2 \theta - \sin^2 \theta \ $
double-angle for cosine $ \cos 2 \theta =2 \cos^2 \theta - 1 \ $
double-angle for cosine $ \cos 2 \theta =1- 2 \sin^2 \theta \ $
double-angle for cosine $ \cos 2 \theta =\frac{1- \tan^2 \theta}{ 1+\tan^2 \theta } \ $
double-angle for tangent $ \tan 2\theta = \frac{2 \tan \theta} {1 - \tan^2 \theta}\, $
double-angle for cotangent $ \cot 2\theta = \frac{\cot^2 \theta - 1}{2 \cot \theta}\, $
Triple-Angle Formulas
triple-angle for sine $ \begin{align}\sin 3\theta & = 3 \cos^2\theta \sin\theta - \sin^3\theta \\ & = 3\sin\theta - 4\sin^3\theta \end{align} $
triple-angle for cosine $ \begin{align}\cos 3\theta & = \cos^3\theta - 3 \sin^2 \theta\cos \theta \\ & = 4 \cos^3\theta - 3 \cos\theta\end{align} $
triple-angle for tangent $ \tan 3\theta = \frac{3 \tan\theta - \tan^3\theta}{1 - 3 \tan^2\theta} $
tripe-angle for cotangent $ \cot 3\theta = \frac{3 \cot\theta - \cot^3\theta}{1 - 3 \cot^2\theta} $
Angle sum and difference identities
Sine $ \sin \left( \theta\pm \alpha \right)=\sin \theta \cos \alpha \pm \cos \theta \sin \alpha $
Cosine $ \cos \left(\theta\pm \alpha \right)= \cos \theta \cos \alpha \mp \sin \theta \sin \alpha $
Tangent $ \tan \left(\theta\pm \alpha \right)= \frac {\tan \theta \pm \tan \alpha}{1 \mp \tan \theta \tan \alpha} $
Arcsine $ \arcsin\alpha \pm \arcsin\beta = \arcsin(\alpha\sqrt{1-\beta^2} \pm \beta\sqrt{1-\alpha^2}) $
Arccosine $ \arccos\alpha \pm \arccos\beta = \arccos(\alpha\beta \mp \sqrt{(1-\alpha^2)(1-\beta^2)}) $
Arctangent $ \arctan\alpha \pm \arctan\beta = \arctan\left(\frac{\alpha \pm \beta}{1 \mp \alpha\beta}\right) $

Back to Collective Table

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch