Revision as of 17:04, 18 March 2013 by Adeola (Talk | contribs)



Alternative Proof for DeMorgan's Second Law

By Oluwatola Adeola

ECE 302, Spring 2013, Professor Boutin


During lecture, a proof of DeMorgan’s second law was given as a possible solution to the quiz which was based on showing that both sets are subsets of each other and are therefore equivalent. Here’s is an alternative method of proving the law that relies on determining a subset based on the exclusion of an element rather than inclusion.

 

DeMorgan's Second Law:  $ {(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c $ 

Proof:

  1. If    $ x \notin {(\bigcap^{n}{S_n})}^{c} $
  2. $ \Rightarrow x \in {\bigcap^{n}{S_n}} $ 
  3. $ \Rightarrow \forall{n}, x \in {S_n} $
  4. $ \Rightarrow \forall{n}, x \notin {(S_n)}^{c} $ 
  5. $ \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}} $ 
  6. By lines 1 through 5: $ x \notin {(\bigcap^{n}{S_n})}^{c} \Rightarrow x \notin {\bigcup^{n}{(S_n)}^{c}} $
  7. By line 6; $ {(\bigcap^{n}{S_n})}^{c} \subseteq \bigcup^{n}{(S_n)}^c $
  8. If $ x \notin {\bigcup^{n}{(S_n)}^{c}} $
  9. $ \Rightarrow \forall{n}, x \notin {(S_n)}^{c} $ 
  10. $ \Rightarrow \forall{n}, x \in {S_n} $ 
  11. $ \Rightarrow x \in {\bigcup^{n}{S_n}} $ 
  12. $ \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c} $ 
  13. By lines 8 through 12:$ x \notin {\bigcup^{n}{(S_n)}^{c}} \Rightarrow x \notin {(\bigcup^{n}{S_n})}^{c} $
  14. By line 13:$ {(\bigcap^{n}{S_n})}^{c} \supseteq \bigcup^{n}{(S_n)}^c $
  15. By lines 7 and 14 $ {(\bigcap^{n}{S_n})}^{c} = \bigcup^{n}{(S_n)}^c $   


Back to 2013 Spring ECE 302 Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett