Revision as of 05:21, 12 January 2013 by Zhu145 (Talk | contribs)

Practice Problemon set operations


Consider the following sets:

$ \begin{align} S_1 &= \left\{ \frac{1}{2}, 1, 1.4, 2 \right\}, \\ S_2 & = \left\{ 0.\bar{9}, 1.40, \frac{42}{21}, 17\right\}. \\ \end{align} $

Write $ S_1 \cup S_2 $ explicitely. Is $ S_1 \cup S_2 $ a set?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

All elements in the following union are distinct, therefore the union is a set.

$ S_1 \cup S_2 = \{ \frac{1}{2}, 0.\bar{9}, 1, 1.4, 2, 17 \} $

Lecture 3.PNG ($ S_1 \cup S_2 $ represented by colored region.)

WOW! That's a VERY nicely written answer. Great work. You only missed one little (somewhat tricky) detail. Can you guess what it is? MATH MAJORS: Can you help him? -pm

Answer 2

The union of S1 and S2 is all the elements in the Venn diagram: in S1, S2, and in both S1 and S2.


Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood