Revision as of 11:37, 29 June 2012 by Hu45 (Talk | contribs)

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 1, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $


Definition: Feasible Direction

        $ \text{A vector } d\in\Re^{n}, d\neq0, \text{ is a feasible direction at } x\in\Omega $

        $ \text{if there exists } \alpha_{0}>0 \text{ such that } x+\alpha d\in\Omega \text{ for all } \alpha\in\left[ 0,\alpha_{0}\right] $

FONC:

        If x* is a local minimizer of f over Ω, then for any feasible direction d at x*, we have 

        $ d^{T} \nabla f\left ( x^{*} \right )\geq0 $

FONC Interior Case:

         $ \nabla f\left ( x^{*} \right )=0 $

SONC: 

        Let x* a local minimizer of f and d a feasible direction at x*,

        If $ d^{T} \nabla f\left ( x^{*} \right )=0 $ , then  $ d^{T} F\left ( x^{*} \right )d\geq 0 $

SONC Interior Case: 

        If $ \nabla f\left ( x^{*} \right )=0 $  , then $ d^{T} F\left ( x^{*} \right )d\geq 0 $


$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\text{Solution 1:} $

$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $ 

         $ \left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right] $

$ \text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0. $


$ \color{blue}\text{Solution 2:} $

$ d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*} $ 

         $ \text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $

$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0 $


$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $

$ \color{blue}\text{Solution 1:} $

$ \text{Let } f\left(x\right)=x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} \text{ , } g_{1}\left(x\right)=-x_{1} \text{ , } g_{2}\left(x\right)=-x_{2} $

$ \text{It is equivalent to minimize } f\left(x\right) \text{, } $  

                                           $ \text{ subject to } g_{1}(x)\leq0, g_{2}(x)\leq0 $

$ \left\{\begin{matrix} l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x) \\ =\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0\\ -\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \\ x_{1} = \frac{1}{2},x_{2} = 0 \end{matrix}\right. $
$ \Rightarrow \mu_{1}=0 , \mu_{2}=3/2 $   

$ \therefore x^{*} \text{ satisfies FONC} $              

$ \color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.} $

$ \text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right) $

$ T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right) $

$ \color{green} \text {Here did not use formal set expression.} T\left( x^{* },\mu^{* } \right) \text{ here should be } T\left( x^{* } \right) $

$ \text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0 $

$ y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.} $


$ \color{blue}\text{Solution 2:} $

$ \text{The problem is equivalent to min} f\left(x_{1},x_{2}\right) = x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} $  

                                                                      $ \text{subject to } x_{1}\leq0, x_{2}\leq0 $

$ Df\left ( x \right )=\left ( \nabla f\left ( x \right ) \right )^{T} = \left [ \frac{\partial f}{\partial x_{1}}\left ( x \right ),\frac{\partial f}{\partial x_{2}}\left ( x \right ) \right ]=\left [ 2x_{1}-1+x_{2},1+x_{1} \right ] $

$ F\left ( x \right ) =D^{2}f\left ( x \right )=\begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}\left ( x \right )\\ \frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left ( x \right ) \end{bmatrix}=\left [ \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right ] $

$ \text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} $

                  $ d^{T} \nabla f\left ( x^{*} \right )=0 \cdots \left ( 1 \right ) $     

                  $ d^{T} F\left ( x^{*} \right )d\geq 0 \cdots \left ( 2\right ) $

$ \text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{2}=0, d_{1}\in\Re $

$ \text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0 $       $ \color{green} A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0 $

$ \therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0 $

$ \text{The point } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.} $


$ \color{blue}\text{Related Problem:} $

        $ f=f\left( x_{1},x_{2} \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2} $

$ \color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.} $

$ \color{blue}\text{Solution:} $

$ \text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix} x_{1}^{2}-x_{2}\\ x_{2}^{2}-x_{1} \end{bmatrix}=0 $

$ \Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} $

$ \text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix} 2x_{1} & -1\\ -1 & 2x_{2} \end{bmatrix} $

$ \text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is indefinite. The point is not a minimizer.} $

$ \text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is positive definite. The point satisfies SOSC to be a strict local minimizer.} $


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang