ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011
$ \color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $
$ \text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $
$ \text{subject to } x_{2}- x_{1}^{2}\geq0 $
$ 2-x_{1}-x_{2}\geq0, x_{1}\geq0. $
$ \color{blue} \text{The point } x^{*}=\begin{bmatrix} 0 & 0 \end{bmatrix}^{T} \text{ satisfies the KKT conditions.} $
$ \color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?} $
$ \color{blue}\text{Solution 1:} $
$ f\left( x \right) = \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $
$ g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0 $
$ g_{2}\left( x \right) x_{1}+x_{2}-2\leq0 $
$ g_{3}\left( x \right) -x_{1}\leq0 $
The problem is to optimize f(x)
$ \text{subject to } g_{1}\leq 0, g_{2}\leq 0, g_{3}\leq 0 $
$ l\left( \mu ,\lambda \right)=\nabla f\left(x \right)+\mu_{1} \nabla g_{1}\left( x \right)+\mu_{2} \nabla g_{2}\left( x \right)+\mu_{3} \nabla g_{3}\left( x \right) $
$ \end{pmatrix} +\mu_{1} \begin{pmatrix} 2x_{1}\\ -1 \end{pmatrix}+\mu_{2}+\begin{pmatrix} 1\\ 1 \end{pmatrix}+\mu_{3}+\begin{pmatrix} -1\\ 0 \end{pmatrix} =0 $
$ \color{blue}\text{Solution 2:} $
$ \text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $
$ \text{subject to } g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0 $
$ g_{2}\left( x \right) x_{1}+x_{2}-2\leq0 $
$ g_{3}\left( x \right) -x_{1}\leq0 $
$ \text{KKT condition: (1) } Dl\left( \mu ,\lambda \right)=Df\left(x \right)+\mu_{1}Dg_{1}\left( x \right)+\mu_{2}Dg_{2}\left( x \right)+\mu_{3}Dg_{3}\left( x \right) $
$ =\left [ 2x_{1}-4+2\mu_{1}x_{1}+\mu_{2}-\mu_{3}, 2x_{2}-2-\mu_{1}+\mu_{2} \right ] $
$ \left ( 2 \right ) \mu^{T}g\left ( x \right )=0 \Rightarrow \mu_{1}\left ( x_{2}^2-x_{2} \right )+\mu_{2}\left ( x_{1}+x_{2}-2 \right ) - \mu_{3}x_{1}=0 $
$ \left ( 3 \right ) \mu_{1},\mu_{2},\mu_{3}\geq 0 \text{ for minimizer} $
$ \mu_{1},\mu_{2},\mu_{3}\leq 0 \text{ for maximizer} $
$ \text{where } \mu^{*}=\begin{bmatrix} \mu_{1}\\ \mu_{2}\\ \mu_{3} \end{bmatrix} \text{ are the KKT multiplier.} $
$ \text{For } x^{*}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{, } $ $ \left\{\begin{matrix} \nabla l\left( x,\mu \right)=\begin{pmatrix} -4+\mu_{2}-\mu_{3}\\ -2-\mu_{1}-\mu_{2} \end{pmatrix}=\binom{0}{0} \\ -2\mu_{2}=0 \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \mu_{1}=-2\\ \mu_{2}=0\\ \mu_{3}=-4 \end{matrix}\right. $
$ \therefore x^{*}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} \text{ satisfy FONC for maximum} $
Automatic Control (AC)- Question 3, August 2011
Problem 1: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion
Problem 2: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2
Problem 3: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3
Problem 4: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4