Revision as of 05:25, 5 April 2012 by Lrprice (Talk | contribs)

This Collective table of formulas is proudly sponsored
by the Nice Guys of Eta Kappa Nu.

Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!

                                         HKNlogo.jpg


Probability Distributions
Random variable Probability density function $ f_{x}(x) $ Mean Variance Characteristic function $ \Phi_{x}(\omega) $
Normal or Gaussian $ N(\mu,\sigma^{2}) $ $ \dfrac{1}{\sqrt{2\pi\sigma^{2}}}e^{-(x-\mu)^{2}/2\sigma^{2}} $, $ -\infty<x<\infty $ $ \mu\ $ $ \sigma^{2}\ $ $ e^{j\mu\omega-\sigma^{2}\omega^{2}/2} $
Exponential $ E(\lambda) $ $ \lambda e^{-\lambda x},x\geq0,\lambda>0 $ $ \dfrac{1}{\lambda} $ $ \dfrac{1}{\lambda^{2}} $
Gamma $ G(\alpha,\beta) $ $ \dfrac{x^{\alpha-1}}{\Gamma(\alpha)\beta^{\alpha}}e^{-x/\beta},x\geq0,\alpha<0,\beta>0 $ $ \alpha\beta\ $ $ \alpha\beta^{2}\ $
Erlang- $ k $ $ \dfrac{(k\lambda)^{\lambda}}{(k-1)!}x^{k-1}e^{-k\lambda x} $ $ \dfrac{1}{\lambda} $ $ \dfrac{1}{k\lambda^{2}} $
Chi-square $ \chi^{2}(n) $ $ \dfrac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)}e^{-x/2},x\geq0 $ $ n\ $ $ 2n\ $
Rayleigh $ \dfrac{x}{\sigma^{2}}e^{-x^{2}/2\sigma^{2}},x\geq0 $ $ \sqrt{\dfrac{\pi}{2}\sigma} $ $ (2-\pi/2)\sigma^{2}\ $
Uniform $ U(a,b) $ $ \dfrac{1}{b-a},a<x<b $ $ \dfrac{a+b}{2} $ $ \dfrac{(b-a)^{2}}{12} $
Beta $ \beta(\alpha,\beta) $ $ \dfrac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1},0<x<1,\alpha>0,\beta>0 $ $ \dfrac{\alpha}{\alpha+\beta} $ $ \dfrac{\alpha\beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} $
Cauchy $ \dfrac{\alpha/\pi}{(x-\mu)^{2}+\alpha^{2}} $ - $ \infty $ $ e^{j\omega\mu}e^{-\alpha|\omega|} $
Nakagami $ \dfrac{2}{\Gamma(m)}(\dfrac{m}{\Omega})^{m}x^{2m-1}e^{-\dfrac{m}{\Omega}x^{2}} $ $ \dfrac{\Gamma(m+1/2)}{\Gamma(m)}\sqrt{\dfrac{\Omega}{m}} $ $ \Omega(1-\dfrac{1}{m}(\dfrac{\Gamma(m+1/2)}{\Gamma(m)})^{2}) $
Students $ f(n) $ $ \dfrac{\Gamma((n+1)/2)}{\sqrt{\pi n}\Gamma(n/2)}(\dfrac{m}{n})^{m/2}x^{m/2-1}(1+\dfrac{mx}{n})^{-(m+n)/2},x>0 $ 0 $ \dfrac{n}{n-2},n>2 $
$ F- $ distribution $ \dfrac{\Gamma((n+1)/2)}{\sqrt{\pi n}\Gamma(n/2)}(\dfrac{m}{n})^{m/2}x^{m/2-1}(1+\dfrac{mx}{n})^{-(m+n)/2},x>0 $ $ \dfrac{n}{n-2},n>2 $ $ \dfrac{n^{2}(2m+2n-4)}{m(n-2)^{2}(n-4)},n>4 $
Bernoulli $ P(X=1)=p,P(X=0)=1-p=q\ $ $ p\ $ $ p(1-p)\ $ $ pe^{j\omega}+q\ $ \tabularnewline
Binomial $ B(n,p) $ $ (\binom{n}{k}p^{k}q^{n-k}), $ $ k=0,1,2,\cdots n,p+q=1 $ $ np\ $ $ npq\ $ $ (pe^{j\omega}+q)^{n} $ \tabularnewline
Poisson $ P(\lambda) $ $ \dfrac{e^{-\lambda}\lambda^{k}}{k!},k=0,1,2,\cdots,\infty $ $ \lambda\ $ $ \lambda\ $ $ e^{-\lambda(1-e^{j\omega})} $ \tabularnewline
Hypergeometric $ \dfrac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}, $ $ max(0,M+n-N)\leq k\leq min(M,n) $ $ \dfrac{nM}{N} $ $ n\dfrac{M}{N}(1-\dfrac{M}{N})(1-\dfrac{n-1}{N-1}) $
Geometric $ \begin{cases} \dfrac{pq^{k},k=0,1,2\ldots,\infty}{pq^{k-1},k=1,2\ldots,\infty,p+q=1} | | .\end{cases} $ $ {\dfrac{q}{p}\atop \dfrac{1}{p}} $ $ \dfrac{q}{p^{2}} $ $ \dfrac{p}{1-qe^{j\omega}} $ or $ \dfrac{p}{e^{-j\omega}-q} $
Pascal or negative binomial $ NB(r,p) $ $ \begin{cases} \dfrac{\binom{r+k-1}{k}p^{r}q^{k},k=0,1,2,\ldots,\infty}{\binom{k-1}{r-1}p^{r}q^{k-r},k=r,r+1,\ldots,\infty,p+q=1} | | .\end{cases} $ $ {\dfrac{rq}{p}\atop \dfrac{r}{p}} $ $ \dfrac{rq}{p^{2}} $ $ (\dfrac{p}{1-qe^{-j\omega}})^{r} $ or( $ \dfrac{p}{e^{-j\omega}-q}) $
Discrete uniform $ 1/N,k=1,2,\ldots,N $ $ \dfrac{N+1}{2} $ $ \dfrac{N^{2}-1}{12} $ $ e^{j(N+1)\omega/2}\dfrac{sin(Nw/2)}{sin(\omega/2)} $

Go to Relevant Course Page: ECE600

Back to Collective Table

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009