Revision as of 05:22, 5 April 2012 by Lrprice (Talk | contribs)

This Collective table of formulas is proudly sponsored
by the Nice Guys of Eta Kappa Nu.

Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!

                                         HKNlogo.jpg


Table of Definite Integrals
Definition of Definite Integral
$ \int_{a}^{b} f ( x ) d x = \lim_{n \to \infty} { f ( a ) \Delta x + f ( a + \Delta x ) \Delta x + f ( a + 2 \Delta x ) + \cdot \cdot \cdot + f ( a + ( n - 1 ) \Delta x ) \Delta x } $
$ \int_{a}^{b} f ( x ) d x = \int_{a}^{b} \frac{d}{dx} g ( x ) d x = g ( x ) |_{a}^{b} = g ( b ) - g ( a ) $
$ \int_{a}^{\infty} d x = \lim_{n \to \infty} \int\limits_{a}^{b} f ( x ) d x $
$ \int_{-\infty}^{\infty} f ( x ) d x = \lim_{a \to - \infty \atop b \to \infty} \int\limits_{a}^{b} f ( x ) d x $
$ \int_{a}^{b} f ( x ) d x = \lim_{\epsilon \to \infty} \int\limits_{a}^{b - \epsilon} f ( x ) d x $
$ \int_{a}^{b} f ( x ) d x = \lim_{\epsilon \to \infty} \int\limits_{a + \epsilon}^{b} f ( x ) d x $
General Rules for Definite Integral
$ \int\limits_{a}^{b} { f ( x ) \pm g ( x ) \pm h ( x ) \pm \cdot \cdot \cdot } d x = \int\limits_{a}^{b} f ( x ) d x \pm \int\limits_{a}^{b} g ( x ) d x \pm \int\limits_{a}^{b} h ( x ) d x \pm \cdot \cdot \cdot $
$ \int_{a}^{b} c f ( x ) d x = c \int_{a}^{b} f ( x ) d x $
$ \int_{a}^{a} f ( x ) d x = 0 $
$ \int_{a}^{b} f ( x ) d x = - \int_{b}^{a} f ( x ) d x $
$ \int_{a}^{b} f ( x ) d x = \int_{a}^{c} f ( x ) d x + \int_{c}^{b} f ( x ) d x $
$ \int_{a}^{b} f ( x ) d x = ( b - a ) f ( c ), \quad \text{where } c \text{ is a number between } a \text{ and } b \text{ as long as } f(x) \text{ is continous between } a \text{ and } b. $
$ \int_{a}^{b} f ( x ) g ( x ) d x = f ( c ) \int\limits_{a}^{b} g ( x ) d x, $
$ \text{where } c \text{ is a number between } a \text{ and } b \text{ as long as } f(x) \text{ is continous between } a \text{ and } b, \text{ and } g(x) \ge 0 $
Leibnitz rule for derivation
$ \frac{d}{d \alpha} \int_{\Phi_1 ( \alpha )}^{\Phi_2 ( \alpha ) } F ( x , \alpha ) d x = \int_{\Phi_1 ( \alpha )}^{\Phi_2 ( \alpha ) } \frac{\partial F}{\partial \alpha} d x + F ( \Phi_2 , \alpha ) \frac{d \Phi_1}{d \alpha} - F ( \Phi_1 , \alpha ) \frac{d \Phi_2}{d \alpha} $
Definite Integral containing rational and irrational expressions
$ \int_{a}^{\infty} \frac {d x}{x^2 + a^2} = \frac{\pi}{2a} $
$ \int_{0}^{\infty} \frac{x^{p-1} d x}{1 + x} = \frac{\pi}{\sin p \pi} \qquad 0<p<1 $
$ \int_{0}^{\infty} \frac{x^m d x}{x^n + a^n} = \frac{\pi a^{m+1-n}}{n \sin [ \frac{( m + 1 ) \pi}{n} ] } \qquad 0<m+1<n $
$ \int_{0}^{\infty} \frac{x^m d x}{1 + 2 x \cos \beta + x^2} = \frac{\pi}{\sin m \pi} \frac{\sin m \beta}{\sin \beta} $
$ \int_{0}^{a} \frac{dx}{\sqrt{a^2 - x^2}} = \frac {\pi}{2} $
$ \int_{0}^{a} \sqrt{a^2 - x^2} d x = \frac{\pi a^2}{4} $
$ \int_{0}^{a} x^m ( a^n - x^n )^p d x = \frac{a^{m+1+np} \Gamma [ \frac{m+1}{n} ] \Gamma ( p + 1 )}{n \Gamma [ \frac{m+1}{n} + p + 1 ]} $
$ \int_{0}^{a} \frac{x^m d x}{( a^n + x^n )^r} = \frac{ (-1)^{r-1} \pi a^{m+1-nr} \Gamma [ \frac{m+1}{n} ] }{n \sin [ \frac{(m+1)\pi}{n} ] ( r - 1 ) ! \Gamma [ \frac{m+1}{n} - r + 1]} \qquad 0<m+1<nr $
Definite Integral containing circular functions
$ \int_{0}^{\pi} \sin mx \sin nx dx = \begin{cases} 0, & m=n \\ \frac{\pi}{2}, & m \neq n \end{cases}. $
$ \int_{0}^{\pi} \cos mx \cos nx dx = \begin{cases} 0, & m=n \\ \frac{\pi}{2}, & m \neq n \end{cases}. $
$ \int_{0}^{\pi} \sin mx \cos nx dx = \begin{cases} 0, & \text{if m+n is an odd number}\\ \frac{2m}{m^2-n^2}, & \text{if m+n is an even number} \end{cases} . $
$ \int_{0}^{\frac{\pi}{2}} \sin^2 x d x = \int_{0}^{\frac{\pi}{2}} \cos^2 x d x = \frac{\pi}{4} $

Back to Collective Table of Formulas

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood