Revision as of 16:16, 4 October 2011 by Mboutin (Talk | contribs)


Practice Question 1, ECE438 Fall 2010, Prof. Boutin

On Computing the DFT of a discrete-time periodic signal


Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= e^{-j \frac{2}{3} \pi n} $.

How does your answer related to the Fourier series coefficients of x[n]?


Post Your answer/questions below.

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N} $

$ N=3 $ That's correct! -pm

$ x[n]= e^{-j \frac{2}{3} \pi n} $

$ X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)} $ You are using the long route, instead of the short route. -pm

$ X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)} $ This gives you a very complicated answer. -pm

$ X [0] = 1+ e^{-j(\frac{2}{3}\pi)(1+0)} +e^{-j\frac{4}{3}\pi(1+0)} $

$ X [0] = 1+ e^{-j(\frac{2}{3}\pi)} +e^{-j(\frac{4}{3}\pi)} $

complex result: Noting $ -2/3\pi $ and $ -4/3\pi $ are conjugates cancel the imaginary component.

$ 1+cos(-2/3\pi) +cos(-4/3\pi) = X[0] = 0 $

$ X [1] = 1+ e^{-j(\frac{2}{3}\pi)(1+1)} +e^{-j\frac{4}{3}\pi(1+1)} $

$ X [1] = 1+ e^{-j(\frac{4}{3}\pi)} +e^{-j\frac{8}{3}\pi} $

complex result: Noting $ -4/3\pi $ and $ -8/3\pi $ are conjugates cancel the imaginary component.

$ 1+cos(-4/3\pi) +cos(-8/3\pi) = X[1] = 0 $

$ X [2] = 1+ e^{-j(\frac{2}{3}\pi)(1+2)} +e^{-j\frac{4}{3}\pi(1+2)} $

$ X [2] = 1+ e^{-j(2\pi)} +e^{-j(4\pi)} $

$ X [2] = 1+ 1 + 1 = 3 $


- AJFunche Nice effort! -pm----


$ x[n] = \frac{1}{N}\sum_{k=0}^{N-1} X[k]e^{j2\pi k\frac{n}{N}} $

$ x[n] = \frac{1}{3}\sum_{k=0}^{2} X[k]e^{j\frac{2\pi}{3}kn} $

$ x[n] = \frac{1}{3} \cdot (X[0] + X[1]e^{j(\frac{2\pi}{3}(1)n )} + X[2]e^{j(\frac{2\pi}{3}(2)n)}) $

Notice that all the powers of e in this expression are positive, but the signal x[n] is expressed as a negative power of e, so you cannot compare just yet. -pm

whoops, I was doing the homework. is that correct? - ksoong

Tecnically yes, but not realy useful for computing the DFT. Instead, use the fact that $ e^{ 2 \pi n j}=1 $ to rewrite x[n] as a positive power of e. (Just add $ 2 \pi n j $ to the exponent of e). -pm

$ \begin{align} x[n]&= e^{-j \frac{2}{3} \pi n} \\ &= e^{-j \frac{2}{3} \pi n} e^{j 2 \pi n} \text{ (since this is the same as multiplying by one, for any integer n)}\\ &= e^{-j \frac{2}{3} \pi n +j 2 \pi n } \\ & = e^{j \frac{4}{3} \pi n} \\ & = e^{j 2 \frac{2\pi n }{3} } \end{align} $

Now compare with the inverse DFT formula.

$ e^{j 2 \frac{2\pi n }{3} } \ \ compare \ with \ \ \frac{1}{3} \cdot (X[0] + X[1]e^{j(\frac{2\pi}{3}n)} + X[2]e^{j(\frac{2\pi}{3}(2)n)}) $

X[0] = 0

X[1] = 0

X[2] = 3


This could easily be shown that due to the modulation property that this is a shifted delta in the DFT world. But to do a little mathematical proof.... $ \begin{align} X [k] &= \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi k n}{N}} \\ &= \sum_{n=0}^{N-1} e^{-j\frac{2}{3}\pi n}e^{\frac{-j2\pi k n}{N}} \text{ where N=3 because of periodicity of the signal} \\ &= \sum_{n=0}^{2} e^{j\frac{4}{3}\pi n}e^{-j \frac{2}{3} \pi n k} \\ &= \sum_{n=0}^{2} e^{-j\frac{2}{3}\pi n (k-2)} \end{align} $

Now to get the final result you must compare this equation to the IDFT formula and you get that

$ \begin{align} X [k] &= \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi k n}{N}} &= 3 \delta (k-2) \end{align} $

In class we compared the IDFT and the Fourier Series expansion and the Fourier coefficients can be expressed (if I remember correctly) as

$ A_{k}= \frac{X[k]}{N} $

This is a different and interesting way of looking at the problem. -pm----

  • Answer/question

Next practice problem


Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang