Revision as of 13:33, 27 April 2011 by Mdknight (Talk | contribs)

Preliminary Definitions


Let $ G $ be a group and $ N $ be a subgroup of $ G $.

The element $ gng^{-1} $ is called the conjugate of $ n\in N $ by $ g $.

The set $ gNg^{-1} =\{ {gng^{-1} | n\in N}\} $ is called the conjugate of $ N $ by $ g $.

The element $ g $ normalizes $ N $ if $ gNg^{-1} = N $.

A subgroup $ N $ of a group $ G $ is said to be normal if every element of $ G $ normalizes $ N $. That is, if $ gNg^{-1} = N $ for all g in G.


Equivalent definitions of Normality


Let $ G $ be a group and $ N $ be a subgroup of $ G $. The following are equivalent:

1. $ gNg^{-1}\subseteq N $ for all $ g\in G $.

2. $ gNg^{-1} = N $ for all $ g\in G $.

3. $ gN = Ng $ for all $ g\in G $. That is, the left and right cosets are equal.

4. $ N $ is the kernel of some homomorphism on $ G $.


The equivalence of (1), (2) and (3) above is proved below:

Lemma: If $ N \le G $ then $ (aN)(bN) = abN $ for all $ a,b \in G $ $ \Leftrightarrow $ $ gNg^{-1} = N $ for all $ g \in G $.




Links to pages on normal subgroups:

(1) http://mathworld.wolfram.com/NormalSubgroup.html

(2) http://eom.springer.de/N/n067690.htm

(3) http://math.ucr.edu/home/baez/normal.html


References:

- http://www.math.uiuc.edu/~r-ash/Algebra/Chapter1.pdf

- Dummit, D.S. & Foote, R.M. (1991). Abstract Algebra. United States: Prentice Hall.

- Gallian, J.A. (2010). Contemporary Abstract Algebra. United States: Brooks/Cole.

- MA 453 lecture notes, Professor Uli Walther

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett