Discrete-time Fourier Transform Pairs and Properties | |
---|---|
DT Fourier transform and its Inverse | |
DT Fourier Transform | $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $ |
Inverse DT Fourier Transform | $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $ |
DT Fourier Transform Pairs | |||||||
---|---|---|---|---|---|---|---|
$ x[n] \ $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) \ $ | |||||
DTFT of a complex exponential | $ e^{jw_0n} \ $ | $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $ | |||||
(info) DTFT of a rectangular window | $ w[n]= \ $ | add formula here | |||||
$ a^{n} u[n], |a|<1 \ $ | $ \frac{1}{1-ae^{-j\omega}} \ $ | ||||||
$ (n+1)a^{n} u[n], |a|<1 \ $ | $ \frac{1}{(1-ae^{-j\omega})^2} \ $ | ||||||
$ \sin\left(\omega _0 n\right) u[n] \ $ | $ \frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right) $ | ||||||
c'o's(ω0n) | $ \pi \sum^{\infty}_{k=-\infty} (\delta(\omega-\omega_0 + 2\pi k)+\delta(\omega+\omega_0-2\pi k)) $ | ||||||
$ sin(\omega_0 n) $ | $ \frac{\pi}{j} \sum^{\infty}_{k=-\infty} (\delta(\omega-\omega_0 + 2\pi k)+\delta(\omega+\omega_0-2\pi k)) $ | ||||||
1 | $ 2\pi\sum^{\infty}_{k=-\infty}\delta(\omega-2\pi k) $ | ||||||
DT Fourier Transform Properties | |||||||
---|---|---|---|---|---|---|---|
$ x[n] \ $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) \ $ | |||||
multiplication property | $ x[n]y[n] \ $ | $ \frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta $ | |||||
convolution property | $ x[n]*y[n] \! $ | $ X(\omega)Y(\omega) \! $ | |||||
time reversal | $ \ x[-n] $ | $ \ X(-\omega) $ | |||||
Differentiation in frequency | $ \ nx[n] $ | $ \ j\frac{d}{d\omega}X(\omega) $ | |||||
Linearity | a'x[n] + b'''y[n] | a'X(ω) + b'''Y(ω) | |||||
Time Shifting | x[n − n0] | $ e^{-j\omega n_0}X(\omega) $ | |||||
Frequency Shifting | $ e^{j\omega_0 n}x[n] $ | X(ω − ω0) | |||||
Conjugation | x * [n] | X * ( − ω) | |||||
Time Expansion | $ x_(k) [n]=\left\{\begin{array}{ll}x[n/k], & \text{ if n = multiple of k},\\ 0, & \text{else.}\end{array} \right. $ | X(kω) | |||||
Differentiating in Time | x[n] − x[n − 1] | (1 − e − jω)X(ω) | |||||
Accumulation | $ \sum^{n}_{k=-\infty} x[k] $ | $ \frac{1}{1-e^{-j\omega}}X(\omega) $ | |||||
Symmetry | x[n] real and even | X(ω) real and even | |||||
x[n] real and odd | X(ω) purely imaginary and odd | ||||||
Other DT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \frac {1}{N} \sum_{n=-\infty}^{\infty}\left| x[n] \right|^2 = $ |