Revision as of 20:44, 7 April 2011 by Ahmadi (Talk | contribs)

Homework 9 Solutions, ECE301 Spring 2011 Prof. Boutin

Students should feel free to make comments/corrections or ask questions directly on this page.

Question 1

(a) The given signal has finite duration and hence it is not band-limited.

(b) The given signal has finite duration and hence it is not band-limited.

(c) The given signal has infinite duration and hence it is band-limited.

(d) The given signal has infinite duration and hence it is band-limited.

Question 2

$ x(t)=e^{j\pi t}\frac{\sin(\pi t)}{t}=\pi e^{j\pi t}\frac{\sin(\pi t)}{\pi t} $

Using frequency shift property of FT, we get:

$ \begin{align} \mathcal{X}(\omega)&=\left\{\begin{array}{ll} \pi , & \mbox{ for } |\omega - \pi|<\pi \\ 0, & \mbox{ elsewhere} \end{array}\right. \\ &=\left\{\begin{array}{ll} \pi , & \mbox{ for } -\pi <\omega-\pi<\pi \\ 0, & \mbox{ elsewhere} \end{array}\right. \\ &=\left\{\begin{array}{ll} \pi , & \mbox{ for } 0<\omega<2\pi \\ 0, & \mbox{ elsewhere} \end{array}\right. \end{align} $

The figure below shows the plot of the FT of $ x(t) $.

301 sp2011 boutin hw9 figure1.jpg

After sampling with a sampling period T, we get:

$ \mathcal{X_s}(\omega)=\frac{1}{2\pi}\mathcal{X}(\omega)*\mathcal{P}(\omega)=\frac{1}{T}\sum_{k=-\infty}^{\infty}\mathcal{X}(\omega-\frac{2\pi k}{T}) $

(a) The FT of the signal after sampling with sampling period $ T=\frac{1}{4} $ is shown in the figure below.

301 sp2011 boutin hw9 figure2.jpg

From the figure, we can see that there is no aliasing and the signal can be recovered by filtering the sampled signal using the following filter:

$ \mathcal{H}(\omega)=\left\{\begin{array}{ll} \frac{1}{4} , & \mbox{ for } 0<\omega<2\pi \\ 0, & \mbox{ elsewhere} \end{array}\right. $

(b) The FT of the signal after sampling with sampling period $ T=\frac{2}{3} $ is shown in the figure below.

301 sp2011 boutin hw9 figure3.jpg

From the figure, we can see that there is no aliasing and the signal can be recovered by filtering the sampled signal using the following filter:

$ \mathcal{H}(\omega)=\left\{\begin{array}{ll} \frac{2}{3} , & \mbox{ for } 0<\omega<2\pi \\ 0, & \mbox{ elsewhere} \end{array}\right. $

(c) The FT of the signal after sampling with sampling period $ T=2 $ is shown in the figure below.

301 sp2011 boutin hw9 figure4.jpg

From the figure, we can see that there is aliasing and thus the signal cannot be recovered.

Question 3

$ \begin{align} \mathfrak{F}\left\{p(t-3)\right\}&=P(\omega)e^{-3j\omega} \\ &=\omega_se^{-3j\omega}\sum_{k=-\infty}^{\infty} \delta(\omega-\omega_s) \\ &=\omega_s \sum_{k=-\infty}^{\infty} e^{-3j\omega_s k}\delta(\omega-\omega_s) \text{ Using sampling property of dirac-delta function} \end{align} $

Let $ x_s(t)=x(t)p(t-3) $, then

$ \begin{align} \mathcal{X}_s(\omega)&=\frac{\omega_s}{2\pi} \mathcal{X}(\omega)*\sum_{k=-\infty}^{\infty}e^{-3j\omega_s k}\delta(\omega-\omega_s k) \\ &=\frac{\omega_s}{2\pi} \sum_{k=-\infty}^{\infty}e^{-3j\omega_s k}\mathcal{X}(\omega)(\omega-\omega_s k) \\ \end{align} $

Note that the exponential term does not depend on $ \omega $, and that at $ k=0 $ it is 1. Thus:

if $ \omega_s>2\omega_M $, then the signal can be recovered by filtering by the following filter:
$ \mathcal{H}(\omega)=\left\{\begin{array}{ll} \frac{2\pi}{\omega_s} , & \mbox{ for } |\omega|<\omega_M \\ 0, & \mbox{ elsewhere} \end{array}\right. $
if $ \omega_s<2\omega_M $, then there will be aliasing and the signal cannot be recovered.

HW9

Back to 2011 Spring ECE 301 Boutin

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010