Homework 4 Solutions
Question 1
a)Memory
Since $ h[n]=e^{j2\pi n}=1 $ for all $ n $, then $ h[n]\neq 0 $ for all $ n\neq 0 $. Hence, this system has memory.
Causality
$ h[n]=e^{j2\pi n}=1 $ for all $ n $, then $ h[n]\neq 0 $ for all $ n<0 $. Hence, the system is not causal.
Stability
$ \sum_{n=-\infty}^{\infty} |h[n]|=\sum_{n=-\infty}^{\infty} 1 = \infty $. Hence, the system is unstable.
b)Memory
Since $ h(t)=e^{j2\pi t}\neq a\delta(t) $, where $ a $ is any number (can be complex). Hence, this system has memory.
Causality
$ h(t)=e^{j2\pi t}\neq 0 $ for $ t<0 $. Hence, the system is not causal.
Stability
$ \int_{-\infty}^{\infty} |h(t)|dt=\int_{-\infty}^{\infty} 1dt = \infty $. Hence, the system is unstable.
c)Memory
Since $ h(t)=e^{j2\pi t}u(-t)\neq a\delta(t) $, where $ a $ is any number (can be complex). Hence, this system has memory.
Causality
$ h(t)=e^{j2\pi t}u(-t)\neq 0 $ for $ t<0 $. Hence, the system is not causal.
Stability
$ \int_{-\infty}^{\infty} |h(t)|dt=\int_{-\infty}^{0} 1dt = \infty $. Hence, the system is not unstable.