Processing math: 0%
Revision as of 05:27, 2 February 2011 by Ahmadi (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Homework 2 Solutions

Question 1

a) $ E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} |e^{-t}u(t)|^2dt = \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt = \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2} $
$ P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} |e^{-t}u(t)|^2dt = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} e^{-2t}dt = \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right] = \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0 $

Since the signal has finite energy, then we expect that it has zero average power.
b)

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett