Revision as of 07:51, 22 October 2010 by Huang94 (Talk | contribs)

If the events are not mutually exclusive then

   $ \mathrm{P}\left(A \hbox{ or } B\right)=\mathrm{P}\left(A\right)+\mathrm{P}\left(B\right)-\mathrm{P}\left(A \mbox{ and } B\right) $

Conditional probability is written P(A|B), and is read "the probability of A, given B"

   $ P(A \mid B) = \frac{P(A \cap B)}{P(B)}\, $


Discrete-time Fourier Transform Pairs and Properties
Property of Probability Functions
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
The intersection of two independent events A and B $ \,P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B)\, $
The union of two events A and B (i.e. either A or B occurring) $ \,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\, $
The union of two mutually exclusive events A and B $ \,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\, $
DT Fourier Transform Pairs
$ x[n] $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
DTFT of a complex exponential $ e^{jw_0n} $ $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $
$ a^{n} u[n], |a|<1 \ $ $ \frac{1}{1-ae^{-j\omega}} \ $
$ \sin\left(\omega _0 n\right) u[n] \ $ $ \frac{1}{2j}\left( \frac{1}{1-e^{-j(\omega -\omega _0)}}-\frac{1}{1-e^{-j(\omega +\omega _0)}}\right) $
DT Fourier Transform Properties
$ x[n] $ $ \longrightarrow $ $ \mathcal{X}(\omega) $
multiplication property $ x[n]y[n] \ $ $ \frac{1}{2\pi} \int_{2\pi} X(\theta)Y(\omega-\theta)d\theta $
convolution property $ x[n]*y[n] \! $ $ X(\omega)Y(\omega) \! $
time reversal $ \ x[-n] $ $ \ X(-\omega) $
Other DT Fourier Transform Properties
Parseval's relation $ \frac {1}{N} \sum_{n=-\infty}^{\infty}\left| x[n] \right|^2 = $

Back to Collective Table

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva