Revision as of 10:29, 29 September 2010 by Han83 (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)



Solution to Question 1 of HW5


$ x_r(t)= \sum_{k=-\infty}^\infty x(kT) \text{ sinc} \left(\frac{t-kT}{T}\right) $

Let m be any integer.

$ \begin{align} \text{a)} \;\; x_r(mT) & = \sum_{k=-\infty}^\infty x(kT) \text{ sinc} \left(\frac{mT-kT}{T}\right) = \sum_{k=-\infty}^\infty x(kT) \text{ sinc} \left((m-k)\right) \\ & = x(mT), \;\; \text{ since} \; \text{ sinc}\left( (m-k) \right) = \left\{ \begin{array}{ll} 1 & \text{ when } m=k \\ 0 & \text{ when } m \neq k \end{array} \right. \end{align} $

$ \begin{align} \text{b)} \;\; & \text{The above expression is equivalent to the following:} \\ & x_r(t) = \sum_{k=-\infty}^\infty x(kT) \delta(t-kT) \ast \text{ sinc} \left(\frac{t}{T}\right) \\ \end{align} $

This implies that the reconstructed signal $ x_r(t) $ is the output of a filter when we input the impulse train of $ x(t) $ with period $ T $.

The impulse response of this filter is $ \text{sinc}(t/T) $, whose frequency response is a ideal low-pass filter with the cut-off frequency of $ 1/(2T) $.

Thus the signal bandwidth $ B $ must be less than $ 1/(2T) $ for the perfect reconstruction.

But the sampling frequency for the impulse train was $ F_s=1/T $. Thus the sampling frequency must be larger than $ 2B $, in order to avoid aliasing when reconstruction.

Hence, when $ F_s>2B $, $ x_r(t)=x(t) $.


Solution to Question 2 of HW5


HW5Q2sol 1.jpg

$ \begin{align} \text{a)} \;\; & x_p(t)=x(t) \sum_{k=-\infty}^{\infty} \delta(t-kT) = \sum_{k=-\infty}^{\infty} x(kT) \delta(t-kT) \\ & h_0(t) = \text{rect}\left(\frac{t-\frac{T}{2}}{T}\right) \\ & x_0(t) = x_p(t) \ast h_0(t) = \sum_{k=-\infty}^{\infty} x(kT) \delta(t-kT) \ast \text{rect}\left(\frac{t-\frac{T}{2}}{T}\right) = \sum_{k=-\infty}^{\infty} x(kT) \text{rect}\left(\frac{t-(k+\frac{1}{2})T}{T}\right) \\ \end{align} $

$ \text{b)}\,\! $

HW5Q2sol 2.jpg

$ \text{c)} \;\; \text{There is no such condition and the impulse response of this LTI system is } h_0(t)\,\! $.

$ \text{d)} \;\; \text{False} \,\! $

Even though the signal is band-limited, sampling will incur the replicas at every multiples of sampling frequency $ 1/T $.

And the frequency response of zero-order hold is $ H_0(e^{jw})=T\text{ sinc}(wT/2)e^{-jwT/2} $, which is not like a low-pass filter.

Therefore, the frequency response of $ x_0(t) $ is not band-limited.


Solution to Question 3 of HW5


$ \text{a)} \;\; \text{General Relation for the decimation with a factor of } D \,\! $.

$ \text{Let } X(w) = \mathcal{F}(x[n]) $

$ \begin{align} Y(w) &= \sum_{n=-\infty}^{\infty} y[n]e^{-jwn} = \sum_{n=-\infty}^{\infty} x[3n]e^{-jwn} \\ &= \sum_{m=-\infty, m=Dl}^{\infty} x[m]e^{-j\frac{wm}{D}} = \sum_{m=-\infty}^{\infty} x[m] \left( \sum_{k=-\infty}^{\infty} \delta[m-Dk] \right) e^{-j\frac{wm}{D}} \\ &= \sum_{m=-\infty}^{\infty} x[m] \left( \frac{1}{D} \sum_{k=0}^{D-1} e^{j\frac{2\pi}{D}kn} \right) e^{-j\frac{wm}{D}} = \sum_{k=0}^{D-1} \frac{1}{D} \sum_{m=-\infty}^{\infty} x[m]e^{j\left(w-\frac{2\pi}{D}k\right)m} \\ &= \sum_{k=0}^{D-1} \frac{1}{D} X\left(\frac{w-2\pi k}{D}\right) \\ \end{align} $

Replacing D with 3 would be the answer.

HW5Q2sol 3.jpg

$ \text{b)} \;\; \text{General Relation for the upsampling with a factor of } L \,\! $.

$ \begin{align} Z(w) &= \sum_{n=-\infty}^{\infty} z[n]e^{-jwn} \\ &= \sum_{n=-\infty}^{\infty} \left( \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL] \right) e^{-jwn} \\ &= \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} \delta[n-kL] e^{-jwn} = \sum_{k=-\infty}^{\infty} x[k] e^{-jwkL} \\ &= \sum_{k=-\infty}^{\infty} x[k] e^{-jLwk} = X(Lw) \\ &\end{align} $

Since $ X(w) $ is periodic with $ 2\pi $, $ Z(w)=X(Lw) $ is periodic with $ 2\pi/L $.

Replaing L with 4 would be the answer.


HW5Q2sol 4.jpg


Back to HW5

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang