CTFT of a impulse train |
$ X(f)=\mathcal{X}(2\pi f)=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(2\pi f-\frac{2\pi k}{T})=\frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T})\ $ |
$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $ |
CTFT of a impulse train |
$ X(f)=\mathcal{X}(2\pi f)=\frac{2\pi}{T}\sum^{\infty}_{k=-\infty}\delta(2\pi f-\frac{2\pi k}{T})=\frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T})\ $ |
$ Since\ k\delta (kt)=\delta (t),\forall k\ne 0 $ |