Revision as of 09:20, 2 November 2009 by Mboutin (Talk | contribs)

Power Series Formulas
Taylor Series
exponential $ e^x = \sum_{n=0}^\infty \frac{x^n}{n!}, $ for all $ x\in {\mathbb C}\ $
Geometric Series
(info) Finite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
(info) Infinite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
Other Series
notes/name equation

Back to Collective Table

Alumni Liaison

EISL lab graduate

Mu Qiao