Revision as of 07:27, 30 October 2009 by Mboutin (Talk | contribs)

Complex Number Identities and Formulas
Basic Definitions
imaginary number $ i=\sqrt{-1} \ $
electrical engineers imaginary number $ j=\sqrt{-1}\ $
conjugate of a complex number if $ z=a+jb $, for $ a,b\in {\mathbb R} $, then $ \bar{z}=a-jb $
magnitude of a complex number $ \| z \| = z \bar{z} $
magnitude of a complex number $ \| z \| = \sqrt{\left(Re(z)\right)^2+\left(Im(z)\right)^2} $
magnitude of a complex number $ \| a+jb \| = \sqrt{a^2+b^2} $, for $ a,b\in {\mathbb R} $
magnitude of a complex number $ \| r e^{j \theta} \| = r $, for $ r,\theta\in {\mathbb R} $
Euler's Formula and Related Equalities
Euler's formula $ e^{jw_0t}=\cos w_0t+j\sin w_0t $
Cosine function in terms of complex exponentials $ \cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2} $
Sine function in terms of complex exponentials $ \sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2j} $

Back to Collective Table

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva