Discrete-time Fourier Transform Pairs and Properties
Please feel free to add onto this table!
DT Fourier transform and its Inverse | |
---|---|
DT Fourier Transform | $ \,\mathcal{X}(\omega)=\mathcal{F}(x[n])=\sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n}\, $ |
Inverse DT Fourier Transform | $ \,x[n]=\mathcal{F}^{-1}(\mathcal{X}(\omega))=\frac{1}{2\pi} \int_{0}^{2\pi}\mathcal{X}(\omega)e^{j\omega n} d \omega\, $ |
DT Fourier Transform Pairs | |||
---|---|---|---|
$ x[n] $ | $ \longrightarrow $ | $ \mathcal{X}(\omega) $ | |
DTFT of a complex exponential | $ e^{jw_0n} $ | $ \pi\sum_{l=-\infty}^{+\infty}\delta(w-w_0-2\pi l) \ $ | |
$ a^{n} u[n], |a|<1 \ $ | $ \frac{1}{1-ae^{-j\omega}} \ $ |