Short Cut: Completely equivalent to complex integration formula
1.) Write X(z) as a power series
$ X(z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n} $
2.) Observe that
$ X(z) = \sum_{n=-\infty}^{\infty}x[n]z^{-n} $
i.e.
$ X(z) = \sum_{n=-\infty}^{\infty}x[-n]z^{n} $
3.) By comparison,
$ x[-n] = c_{n} $
or
$ x[n] = c_{-n} $
Example:
$ X(z) = $