Inverse Z-transform
$ x[n] = \oint_C {X(Z)} {Z ^ {n-1}} , dZ \ $
where C is a closed counterwise countour inside the ROC of the Z- transform and around the origin.
$ = \sum_{poles a_i ( X(Z) Z ^ {n-1})} Residue ( X(Z) Z ^ {n-1}) \ $ $ = \sum_{poles a_i ( X(Z) Z ^ {n-1})} \ $ Coefficient of degree (-1) term on the power series expansion of $ ( X(Z) Z ^ {n-1}) \ $ $ about a_i \ $
So inverting X(Z) involves power series.
$ f(X)= \sum_{n=0}^\infty \frac{f^n (X_0) X-X_0)^(n)} {n!}} \ $ , near $ X_0 $
$ \frac{1}{(1-x)} = \sum_{n=0}^\infty X^n \ $ , geometric series where |X|=1
Computing equivalent to complex integration formula's
1) Write X(Z) as a power $ Insert formula here $series.
$ X(Z) = \sum_{n=-\infty}^{\infty} \ C_n Z^n \ $ , series must converge for all Z's on the ROC of X(Z)
2) Observe that
$ X(Z) = \sum_{n=-\infty}^{\infty} \ x[n] Z^{-n} \ $
i.e.,
$ X(Z) = \sum_{n=-\infty}^{\infty} \ x[-n] Z^n \ $
3) By comparison
$ X[-n] = \ C_n \ $
or
$ X[n] = \ C_ -n $
Example 1:
$ X(Z) = $