DFT ( Discrete Fourier Transform )
Definition
DFT $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1 $
Inverse DFT (IDFT) $ x[n] = \sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1 $ Back to ECE438 course page
Definition
DFT $ X(k) = \sum_{n=0}^{N-1}{x[n]e^{-j2{\pi}kn/N}} k = 0, 1, 2, ..., N-1 $
Inverse DFT (IDFT) $ x[n] = \sum_{k=0}^{N-1}{X(k)e^{j2{\pi}kn/N}} n = 0, 1, 2, ..., N-1 $ Back to ECE438 course page