Revision as of 13:10, 30 June 2008 by Mmize (Talk)

We are given the input to an LTI system along with the system's impulse response and told to find the output y(t). Since the input and impulse response are given, we simply use convolution on x(t) and h(t) to find the system's output.

$ y(t) = h(t) * x(t) = \int_{-\infty}^\infty h(\tau)x(t - \tau)d\tau $


Plugging in the given x(t) and h(t) values results in:

$ y(t) = \int_{-\infty}^\infty e^{-\tau}u(\tau)u(t - \tau - 1)d\tau $
    $ = \int_0^\infty e^{-\tau}u(t - \tau - 1)d\tau $
    $ = \int_0^{t-1} e^{-\tau}d\tau $ 
    $ = 1 - e^{-(t - 1)}\, $ for t > 1


Since x(t) = 0 when t < 1:

$ y(t) = 0\, $ for t < 1

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal