Revision as of 15:39, 11 July 2008 by Dvtran (Talk)

The case $ \mu(X)=\infty $ the inequality is true.

Suppose $ \mu(X) $ is finite, we have

Given $ p^{'}=\frac{p+r}{2} $,

$ \int_{X}|f|^{r}d\mu \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p^{'}} \leq \int_{X}|f|^{p^{'}}(\mu(X))^{1-r/p} $ by Holder.

Now, let $ g=|f|^{p{'}} $, then $ w(y)=\mu(\{g>y\} \leq \frac{c_{0}}{y^{p/p{'}}} $

$ \int_{X}g d\mu = \int_{0}^{\infty}w(y)dy \leq c_{0}\int_{0}^{\infty}\frac{dy}{y^{p/p{'}}} $

Let $ c=c_{0}\int_{0}^{\infty}\frac{dy}{y^{p/p{'}} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang