Revision as of 12:53, 7 April 2008 by Han47 (Talk)

Metric Space (X,d) $ d:X \times X \rightarrow \Re ^{+} $

X is set, not necessarily vector space

$ x, y, z \in X $

1. $ d(x,y)=d(y,x) $

2. $ d(x,z)\leq d(x,y)+d(y,z) $

3. $ d(x,y) \geq 0, d(x,y)=0 \Leftrightarrow x=y) $

If X is vector space, metric can be induced by the norm $ ||\cdot|| $.

$ d(x,y)=||y-x|| $

Norm is defined as follows

$ ||\cdot||: X \rightarrow \Re ^{+} $

1. $ |x| \geq 0, ||x||=0 \Leftrightarrow x=0 $ 2. $ ||\alpha x||=|\alpha | ||x|| $ 3. $ ||x+y|| \leq ||x|| + || || $

Defining metric, we can measure similarity of elements of set X.

Example of metric 1. Minkowski Metric $ \left( \sum_{i=1}^n \left| x_i - y_i \right|^p \right)^{1/p} $

2. Riemannian Metric

3. Tanimoto metric

4. Procrustes metric

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin