Revision as of 16:29, 30 March 2008 by Arora6 (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The class of the data is written as the second co-ordinate. $ {\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}=0 $

    • 3 inequalities**:

$ 1.w+b\leq-1 $

$ 2.w+b\leq+1 $

$ 3.w+b\leq+1 $

$ J=\frac{{w}^{2}}{2}-{\alpha }_{1}\left(-w-b-1 \right)-{\alpha }_{2}(2w+b-1)-{\alpha }_{3}(3w+b-1) $

Formulating the Dual Problem:

<img src="svm1.bmp" />

<img alt="tex:Q(\alpha )= {\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}-[0.5{{\alpha }_{1}}^{2}+2{{\alpha }_{2}}^{2}+4.5{{\alpha }_{3}}^{2}-2{\alpha }_{1}{\alpha }_{2}-3{\alpha }_{1}{\alpha }_{3}-6{\alpha }_{2}{\alpha }_{3}] " />


Subject to constraints

<img alt="tex:-{\alpha }_{1}+{\alpha }_{2}+{\alpha }_{3}=0" /> and

<img alt="tex:{\alpha }_{1}\geq 0; {\alpha }_{2}\geq 0;{\alpha }_{3}\geq 0" />

Differentiating partially with respect to <img alt="tex:{\alpha }_{1},{\alpha }_{2}, {\alpha }_{3}" />


<img alt="tex:1-{\alpha }_{1}+2{\alpha }_{2}+3{\alpha }_{3}=0" />

<img alt="tex:1+2{\alpha }_{1}-4{\alpha }_{2}-6{\alpha }_{3}=0" />

<img alt="tex:1+3{\alpha }_{1}-6{\alpha }_{2}-9{\alpha }_{3}=0" />

On Solving, we get

<img alt="tex:{\alpha }_{1}=2" />

<img alt="tex:{\alpha }_{2}=2" />

<img alt="tex:{\alpha }_{3}=0" />

This yields w = 2, b = -3. Hence the solution of decision boundary is: 2x - 3 = 0. or x = 1.5 This is shown as the dash line in above figure.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang