Revision as of 03:10, 12 December 2008 by Cdleon (Talk)

Maximum Likelihood Estimation (ML)

$ \hat a_{ML} = \text{max}_a ( f_{X}(x_i;a)) $ continuous

$ \hat a_{ML} = \text{max}_a ( Pr(x_i;a)) $ discrete

Maximum A-Posteriori Estimation (MAP)

Minimum Mean-Square Estimation (MMSE)

$ \hat{y}_{\rm MMSE}(x) = \int\limits_{-\infty}^{\infty}\ {y}{f}_{\rm Y|X}(y|x)\, dy={E}(Y|X=x) $

Mean square error : $ MSE = E[(\theta - \hat \theta(x))^2] $

Linear Minimum Mean-Square Estimation (LMMSE)

$ \hat{y}_{\rm LMMSE}(x) = E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $

Hypothesis Testing: ML Rule

Type I error

Type II error

Hypothesis Testing: MAP Rule

Overall P(err)

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010