Revision as of 15:31, 11 December 2008 by Sanghavi (Talk)

Maximum Likelihood Estimation (ML)

Maximum A-Posteriori Estimation (MAP)

Minimum Mean-Square Estimation (MMSE)

$ {y}_{\rm MMSE}(x) \int\limits_{-inf}^{inf}\ {y}{f}_{\rm y|x}(Y|X=x)\, dy={E}(Y|X=x) $


$ {y}_{\rm LMMSE}(x)=E[\theta]+\frac{COV(x,\theta)}{Var(x)}*(x-E[x]) $


Mean square estimate : $ MSE = E[(\theta - \hat \theta(x))^2] ==Linear Minimum Mean-Square Estimation (LMMSE)== ==Hypothesis Testing: ML Rule== Type I error Type II error ==Hypothesis Testing: MAP Rule== Overall P(err) $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett