Revision as of 11:14, 1 March 2009 by Kim415 (Talk | contribs)


a)
$ h[n] = \frac{1}{8}(\delta[n] + \delta[n-1] +\delta[n-2] +\delta[n-3] +\delta[n-4] +\delta[n-5] +\delta[n-6] +\delta[n-7]) $

b)
$ y(z) = \frac{1}{8}(x(z) + x(z)z^{-1} + x(z)z^{-2}+x(z)z^{-3}+x(z)z^{-4}+x(z)z^{-5}+x(z)z^{-6}+x(z)z^{-7}) $ $ H(z) = \frac{y(z)}{x(z)} = \frac{1}{8}(1 + z^{-1} + z^{-2}+z^{-3}+z^{-4}+z^{-5}+z^{-6}+z^{-7}) $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett