Revision as of 10:43, 17 November 2008 by Gmccoy (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Given observation X used to estimate an unknown parameter $ \theta $ of distribution $ f_x(X) $ (i.e. $ f_x(X) = $ some function $ g(\theta) $

Consider three expressions (distributions):

1. Likehood:

$ p(X; \theta) $ (discrete)

$ f_x(X; \theta) $ (continuous)

used for MLE: $ \overset{\land}\theta_{ML} = f_x(X | \theta) $

2. Prior:

$ P(\theta) $ (discrete)

$ P_\theta(\theta) $ (continuous)

Indicates some prior knowledge as to what $ \theta $ should be. Prior refers to before seeing observation.

3. Posterior:

$ p(\theta | x) $ (discrete)

$ f_x(\theta, x) $ (continuous)

"Posterior" refers to after seeing observations. Use Posterior to define maximum a-posterior i (map) estimate:

$ \overset{\land}\theta_{\mbox{MAP}} = \overset{\mbox{argmax}}\theta f_{\theta | X}(\theta | X) $

Alumni Liaison

EISL lab graduate

Mu Qiao