Contents
ECE438 Course Notes January 14, 2009
1)Definitions
ECE438 is about digital signals and systems
2) Digital Signal = a signal that can be represented by a sequence of 0's and 1's.
so the signal must be DT X(t) = t, i.e. need x(n), n belongs to Z
Signal values must be discrete
-$ x(n) \in {0,1} $ <-- binary valued signal
$ x(n) \in {0,1,2,...,255} $ <-- gray scale valued signal
Another example of digital signal
-the pixels in a bitmap image (grayscale) can have a value of 0,1,2,...,255 for each individual pixel. --If you concatenate all the rows of the image you can convert it to a 1 dimensional signal. i.e. $ x = (row1,row2,row3) $
2D Digital signal = signal that can be represented by an array of 0's and 1's
example: 128x128 gray scale image
$ p_{ij} \in {0,...,255} $
matrix $ A_{ij} = p_{ij} $ of size 128x128
Digital signals play an important roll in forensics applications such as: watermarking, image identification, and forgery detection among many others. Go to PSAPF and VIP's Sensor Forensics to find out more information about these applications.
Digital Systems = system that can process a ditital signal.
E.g.
- Software (MATLAB,C, ...)
- Firmware
- Digital Hardware
Advantages of Digital Systems
- precise,reproducable
- easier to store data
- easier to build:
- just need to represent 2 states instead of a continuous range of values
Software based digital systems
- easier to build
- cheap to build
- adaptable
- easy to fix/upgrade
Hardware-based digital systems
- fast.
Continuous time world
|
Digital World
|
These world are brought together using sampling & quantization, as well as reconstruction
Signal Characteristics
- Deterministic vs. random
- x(t) well defined , s.a. $ x(t) = e^{j\pi t} $
- x(n) well defined , s.a. $ x(n) = j^{n} $
ex: Lena's image
- Random
- x(t) drawn according to some distribution
- example: x(t) white noise
x = rand(10) (almost) random
- Periodic vs. non-periodic
- if $ \exists $ positive T such that x(t+T) = x(t),$ \forall t $ then we say that x(t) is periodic with period T
ECE438 Course Notes January 16, 2009
Todays Goals
- Signal Characteristics
- Signal Transformations
- Special Signals
- Singularity Functions
right sided signal:
$ \exists t_{min} (n_{min}) $ such that $ x(t) = 0 $ when $ t < t_{min} $
left sided signal:
$ \exists t_{max} (n_{max}) $ such that $ x(t) = 0 $ when $ t > t_{max} $
if $ t_{max} \leq 0 $ we say the signal is anticausal
two sided (mixed causal):
neither left sided nor right sided
Finite Duration Signal:
both right and left sided, $ \exists t_{min},t_{max} $ such that $ x(t) = 0 $ for $ t > t_{max} $ and $ t < t_{min} $
Signal Metrics
- Signal Energy
-
$ E_x = \int_{-\infty}^{\infty} |x(t)|^2\,dt $ for ct (continuous time)
$ E_x = \sum_{n=-\infty}^{\infty} |x(n)|^2 $ for dt (discrete time)
-
- Signal Power
-
$ P_x = \lim_{T \Rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x(t)|^2\,dt $ for ct (continuous time)
$ P_x = \lim_{N \Rightarrow \infty}\sum_{n=-N}^{N} |x(n)|^2 $ for ct (continuous time)
note: for periodic signals
$ P_x = \frac{1}{N}\sum_{n=0}^{N-1}|x(n)|^2 $
-
- Signal RMS (root-mean-square)
- $ X_{rms} = \sqrt{P_x} $
- Signal Magnitude
-
$ m_x = max|x(t)| $, for CT
$ m_x = max|x(n)| $, for DT
if $ m_x < \infty $, we say signal is bounded
-
- Scaling ($ y(t) = x(\frac{t}{a}) $)
-
note: y(0) = x(0), fixed point at t=0
if a > 1, graph will narrow
if a < 1, graph will expand
if a>1 will not work for digital signals
Down Sampler:
$ y(n) = x(Dn) $, D = integer > 1
$ x(n) \Rightarrow D\Downarrow \Rightarrow y(n) $Up Sampler: $ x(n) \Rightarrow D\Uparrow \Rightarrow y(n) $
$ y(n) = x(\frac{n}{D}) $, if n/D is an integerScaling and Shifting $ y(t) = x(\frac{t}{a}-t_0) $
note: $ y(0) = x(-t_0) $
-
ECE438 Course Notes January 21, 2009
Delta Functions
Continuous-time: (a.k.a. Dirac delta function)
$ \delta(t) = \lim_{\triangle \Rightarrow 0} \frac{1}{\triangle}rect(\frac{t}{\triangle}) $
Properties
- $ \int_{-\infty}^{\infty} \delta(t)\,dt = 1 $(unit area)
- $ \int_{-\infty}^{\infty} x(t) \delta(t-t_0)\,dt = x(t_0) $(sifting property)
Discrete-time: (a.k.a. Kronecher delta fn.)
$ \delta[n] = 1 | n=0, 0 | 0 > n < 0 $
- Sifting Property: $ \sum_{n=-\infty}^{\infty} x[n] \delta[n-n_0] = x[n_0] $
Comb & Rep operators (for CT signals)
Comb operator multiplies a signal by an "impulse train".
- $ \sum_{k=-\infty}^{\infty} \delta(t-kT) $
- $ Comb_T{{x(t)}} = x(t)\sum_{k=-\infty}^{\infty} \delta(t-kT) = \sum_{k=-\infty}^{\infty} x(kT)\delta(t-kT) $
Rep operator simply replicates a signal every T units:
$ rep_T{{x(t)}} = \sum_{k=-\infty}^{\infty} x(t-kT) $
Systems
A system maps an input signal x(t) to a unique output signal, y(t).
$ x(t) \Rightarrow \mbox {System} \Rightarrow y(t) $
$ y(t) = S[x(t)] $