Revision as of 14:44, 5 November 2008 by Robertsr (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Question 16: Show that Corollary 3 of Theorem 16.2 is false for any commutative ring that has a zero divisor.

Corollary 3 states that a polynomial of degree n over a field has a most n zeros (roots) counting multiplicity. In other words, if have zero divisors Corollary 3 fails.


PROOF:

If the field R has zero divisors then there is a polynomial with more than deg(7) roots. a, b are contained in R a * b = 0 which make a and b zero divisors since a,b do not equal 0

(x-a) (x-b) has roots a,b

f: x^2 -ax-bx+ab

x(x-a-b) = 0 this has 4 roots (a,b,0, a+b) and degree of polynomial f is 2

x = a + b

commutative used -ax = -xa

--Robertsr 19:44, 5 November 2008 (UTC)

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn