Revision as of 14:04, 20 September 2008 by Robertsr (Talk)

The back of the book gives an answer, but I don't find it helpful. Does anyone have a good explaination on how to work this problem?

--Akcooper 16:34, 17 September 2008 (UTC)

Thm. 4.2 says that Let a be an element of order n in a group and let k be a positive integer. Then $ <a^k> = <a^{gcd(n,k)}> $ and $ |a^k| = n/gcd(n,k) $.

Let G = <a> be a cyclic group of order n. Then G = $ <a^k> $ if and only if gcd(n,k)=1

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett