Revision as of 06:25, 13 September 2008 by Jstraete (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Euler $ \varphi $-function

Def: For d $ \in \mathbb{N} $ let $ \varphi(d) $=# (i with 0 ≤ i ≤ d-1, gcd(i,d) =1).

We used the example in class:


$ (\mathbb{Z}/6\mathbb{Z},+) $. Consider a=1. ord(a)=6.

Generator | Subgroup Generated | Size of Subgroup

1 | 1,2,3,4,5,0 | 6 = 6/gcd(6,1)
2 | 2,4,0 | 3 = 6/gcd(6,2)
3 | 3,0 | 2 = 6/gcd(6,3)
4 | 4,2,0 | 3 = 6/gcd(6,4)
5 | 5,4,3,2,1,0 | 6 = 6/gcd(6,5)
0 | 0 | 1 = 6/gcd(6,0)


From the example, we found:

$ \varphi(1) $ = 1
$ \varphi(2) $ = 1
$ \varphi(3) $ = 2
$ \varphi(6) $ = 2

I don't understand how we found the $ \varphi(d) $ -Jesse

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett