Z Transform
Discrete analog of Laplace Transform
$ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} $
Where z is a complex variable.
Relationship between Z-Transform and F.T.
- $ X(\omega) = X(e^{j\omega} $
- $ X(z)=X(re^{j\omega}) $
Then $ X(z) = F(x[n]r^-n) $ $ X(z) = \sum_{n = -\infty}^\infty x[n]z^{-n} = \sum_{n = -\infty}^\infty x[n](re^{j\omega})^}-n} = \sum_{n = -\infty}^\infty x[n]r^{-n}e^{-j\omega n} $