Revision as of 18:03, 20 October 2008 by Drmorris (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Example 1

Compute the Fourier Transform of $ x(t)=e^{-t}u(t) $.

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $ $ =\int_{-\infty}^{\infty}e^{-t}u(t)e^{-j\omega t}dt $ $ =\int_{0}^{\infty}e^{-t}e^{-j\omega t}dt $ $ =\int_{0}^{\infty}e^{-(1+j\omega )t}dt $ $ =[\frac {e^{-(1+j\omega )t}}{-(1+j\omega)}]|_0^\infty $ $ X(\omega)=\frac {e^{-(1+j\omega )\infty}}{-(1+j\omega)}-\frac {e^{-(1+j\omega )0}}{-(1+j\omega)} $ $ =0-\frac {1}{-(1+j\omega)} $ $ =\frac {1}{(1+j\omega)} $

Example 2

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett