Revision as of 07:55, 15 October 2008 by Huang122 (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Question 4 Compute the coefficients $ a_k $ of the Fourier series of the signal $ x(t) $ periodic with period $ T=4 $ defined by $ \,x(t)=\left\{\begin{array}{cc} 0, & -2<t<-1 \\ 1, & -1\leq t\leq 1 \\ 0, & 1<t\leq 2 \end{array} \right. \, $

(Simplify your answer as much as possible.)



Ans: $ a_0= average of x(t) = /frac {1x2}{4}=/frac{1}{2}; T=4, <math>\omega _o = \frac{2 \pi} {4} = \frac{\pi}{2}\, $

for k<>0,

$ a_k=\frac{1}{T}\int_{0}^{T}x(t)e^{-jk\frac{2\pi}{T}t}dt\, $

$ a_k=\frac{1}{4}\int_{-2}^{2}x(t)e^{-jk\frac{\pi}{2}t}dt\, $

$ a_k=\frac{1}{4}\int_{-1}^{1}x(t)e^{-jk\frac{\pi}{2}t}dt\, $

$ a_k=\frac{1}{4} \left.\frac{1}{-jk\frac{\pi}{2}}e^{-jk\frac{\pi}{2}t}\right|_{-1}^{1}\, $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang